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Abstract 

Distribution theory is utilized to represent 
stochastic modulation and noise processes as ana- 
lytic time functions. These representations are 
used to obtain new results in single sideband 
angle demodulation in the presence of noise. 

Introduction 

The usefulness of the representation of mod- 
ulated signals by analytic time functions has been 
well established by Gabor,(l) Oswald, ( 2 )  
Bedrosian, (3) and 0thers.l 
stochastic, or "noise," processes by analytic 
functions has received less attention, being 
treated primarily by Middleton,(4) Dugundji,(5) 
Zakai, ( 6 )  and Belyaev. (7) 

The representation of 

Representation of modulation and noise by 
analytic time functions is made intuitionally and 
mathematically acceptable through use of the 
powerful tools of distribution theory. Works such 
as those of Gel'Fand and Shilov,(8) Zemanian, ( 9 )  
and Jones,(l0) derive the few properties of dis- 
tributions which are needed to provide an enlight- 
ening, yet simple, method for treating stochastic 
modulation and noise processes. 

A systematic development of the theory is 
applied in this paper to obtain new results in 
demodulation of SSB angle-modulated signals in 
the presence of noise. 

An Analytic Distributional Convolution Transform 

Deterministic Functions 

Let us postulate a nonphysical linear system, 
shown in Figure 1, whose input is a real time 
function, x(t), and whose output is the analytic 

n - 
Figure 1. - Nonphysical system. 

'See Bedr~sian(~) and Voelcker(ll) for 
bibliography. 

form of x(t) denoted z(t). 
fies the Cauchy-Riemann equations on the real 
t-axis of the complex plane, and 

That is, z(t) satis- 

z(t) = x(t) + jdt) (1) 

The impulse response h(t), of such a system is a 
complex singular distribution given by2 

1 h(t) = 6(t) + j - 
Xt 

This may be shown by writing, formally, the con- 
volution integral relating x(t), h(t), and z(t). 

It should be understood that the convolution inte- 
gral in equation (3) exists only in the distribu- 
tional sense and is given as a conceptual device 
only. The integral in the imaginary term of equa- 
tion (3) is readily identified as the Hilbert 
transform of x(t). 
Titchmarsh,(13) z(t) is analytic whenever the 
Hilbert transform of x(t) exists. 

Hence, according to 

We may interpret h(t) as a "kernel" for a 
linear, convolution-type transform from real to 
analytic time functions. The real function can 
always be recovered simply by taking the real part 
of the analytic function. 

Stochastic Processes 

When x(t) is deterministic, z(t) is deter- 
ministic. When x(t) is stochastic, z(t) is sto- 
chastic. The existence of z(t) in the determin- 
istic case may be inferred from the existence of 
the Hilbert transform of x(t). For the stochastic 
case, it is simpler to determine existence of z(t) 
from conditions on the covariance given by 
Belyaev. (7) 

2Kailath(u) has used this distribution in a 
related application. 
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Let us derive the covariance relations for 
our model of Figure 1, under the mild restric- 
tions that x(t) is stationary in the wide-sense 
and of zero mean value. Then the covariance and 
autocorrelation function of x( t) are identical. 
Also, the autocorrelation function, R=(T), is 
time-invariant, varying only with time displace- 
ment, T. Hence, the autocorrelation function is 
deterministic. 

Because of linearity, z(t) is w e a u  station- 
ary and the autocorrelation function is 

where E denotes the statistical expectation, the 
midline asterisk denotes convolution integral, 
and the superscript asterisk denotes complex con- 
jugate. It may be determined that 

h(T) * h*(-T) = 2h(~) ( 5 )  

Thus 

Rzz(T) = Rxx(T) * 2h(T) 
= 2 R=(T) + jRxx(T) (6 1 c “ I  

where the caret denotes Hilbert transform. Since 
R=(T) is deterministic, R Z Z ( 7 )  is analytic when- 
ever the Hilbert transform of R=(T) exists. 
Belyaev(7) shows that a sufficient condition for 
the existence of an analytic stochastic process 
is the analyticity of its covariance. Thus, we 
see that the process, z(t), at the output of our 
nonphysical linear system, is analytic provided 
the autocorrelation of the real function, x(t), 
has a Hilbert transform. 

Now, 

The cross-correlation functions between x(t) 
and z(t) may be developed as was the autocorrela- 
tion function to obtain 

Then using the analyticity of z(t), equations (6) 
and f7), and the general relation 

we obtain 

1 

Similar relations were obtained by DUgundji(7) 
using time averages. 
weakly stationary processes by Zakai,(6) using a 
frequency domain approach to the Hilbert transform. 

His results were extended to 

The power spectral density of z(t), denoted 
Szz(u)) may be developed from equation (6) as the 
Fourier transform of R Z Z ( ~ )  

where H(w) and S,(w) are the Fourier transforms 
of the impulse response, h(T),  and of the auto- 
correlation of x(t), respectively. H(u)) exists 
only in a distributional sense,(9) and is given by 

thus 

4 sxx(w) ; u) > 0 

szz(w) = 2 sxx(w) ; u) = 0 (l.2) 
[o ;J 

Equation (l.2) shows that forming an analytic pro- 
cess or function from its real part quadruples the 
positive frequency components and deletes the neg- 
ative frequency components. 

By a development similar to the above it may 
be shown that convolving the conjugate analytic 
kernel, h*(t), with a real function produces a 
conjugate analytic function, z*(t). The autocor- 
relation for this function is also conjugate ana- 
lytic. 
negative frequencies. 

The power spectral density exists only for 

Bandpass Processes 

Bandpass processes may be defined rather gen- 
erally as processes with spectral densities which 
have a finite frequency support not extending to 
the origin. Such processes are usually referred 
to particular frequency cue. 

However, the spectral density need not be 
symmetric over the positive frequencies with 
respect to wc or any other frequency. Using com- 
plex time function notation, both signal processes 
and noise processes may be treated in essentially 
the same manner3. 

3Helstrom(14) has made a similar observation. 



where $(t) is analytic. 
we have 

For a deterministic f(t), 

g(t) = 3t) ( 2 5 )  

and 

A(t) = A exp[-?(t)] 

Suppose g(t) is a zero-mean, weakly station- 
Then f(t) and g(t) ary complex Gaussian process. 

are individually and jointly Gaussian and weakly 
stationary. The autocorrelation function of the 
analytic signal, +(t), is 

The expectation in equation (27) has the form of 
a characteristic function. The autocorrelation 
function reduces to 

For $(t) to represent an upper sideband signal, we 
must have 

and, thus, g(t) is analytic, as supposed. 

Detection Results 

Let us consider the linear product demodula- 
tion of a single-sideband angle modulated carrier 
in the presence of noise. A deterministic sinus- 
oidalmodulating signal is chosen. Figure 2 shows 
the model. Optimum bandpass filtering is employed 
at the input which ideally passes the signal, 
undistorted, and only the noise above me. ni(t) 
is band-limited white Gaussian noise of the form 
of equation (17) where x(t) + jy(t) is analytic. 
si(t) and Sr(t) are 

si(t) = A expEp sin %t cos act + p cos %i-j I C  
sr(t) = -2 sin Q t  

Then, the ratio of output signal (nxodulation) to 

noise, $1 , is related to the ratio of input 
O Bo 

signal (total) to noise, - si] , as 
Ni 

where Io is the modified Bessel function. The 
"modulation gain factor," the function of p in 
brackets in equation (3l), has a maximum value of 
0.475 for p = 1.29. 
tion system is inherently a "low-index" system. 

Hence, this type of modula- 

Next, consider the limiter-discriminator 
demodulation of a single-sideband angle modulated 
carrier in the presence of noise. A Gaussian 
modulating process is chosen. Figure 3 shows the 
model where, again, optimum, ideal, input filtering 
is assumed. 
limiter is the same as for the previous example. 
The input signal is 

The noise process ni(t) into the 

si(t) = A expCg(t))cospct + f(t) + e3 (32)  

where 0 is a uniformly distributed random constant 
and f(t) + jg(t) is an analytic Gaussian process. 
A lowpass spectral density is assumed for f(t) as 

- .... 

where co, is some upper cut-off frequency and K is 
a constant. 

INPUT OUTPUT 

Figure 2.- Linear demodulator model. 



Noise Processes 

Let us now generalize o w  process, z(t), SO 
that it is not necessarily analytic. 
bandpass process, v(t), may be defined as 

An analytic 

for which is simply some reference frequency by 
which the spectrum of z(t) is translated. 
the restriction that x(t) and y(t) are individually 
and jointly stationary in the wide sense, z(t) is 
weakly stationary and v(t) has autocorrelation 

Under 

The spectral 

positive frequency. 
and n(t) lie entirely above the reference fre- 
quency, uc. 
also permissible for (uC to be above the spectrum 
of n(t). 
spectrum of n(t), equations (18) are satisfied if 
z(t) is complex Gaussian. (l7) Then x(t) and y(t) 
are of zero mean and individually and jointly 
weakly stationary and Gaussian. 

Hence, the spectra of v(t) 

Similar reasoning shows that it is 

For the case where cuc lies within the 

For either case, the autocorrelation functions 
are given as 

R~,,(T) = 2 ~ ~ ( 7 )  + jRyX(T) exPCjocg (19) II I 
= R~(T)COS O ~ T  - f5X(-r)sin O ~ T  (20)  

+ jbx(T) - Rw(.;)>.xp~mcg (14) 
Signal Processes 

density of v(t) is then Let us generalize z(t) further as 

For v(t) to be analytic requires that Svv(ul) exist 
only f o r  positive frequency. Hence, a lower bound 
is placed on the spectrum of z(t) as 

SZz(u1) = 0 j u1 < -oc ; v(t)analytic (16) 

The result of equation (16) has been stated by 
Nuttal. (15) 

The pbysical process associated with the 
analytic process, v(t), is defined as 

n(t) = Re(v(t)) = x(t)cos wet - y(t)sin wet (17) 

Now, it is required that n(t) be weakly station- 
ary. Whereas the weak stationarity of v(t) 
required only that z(t) be weakly stationary, the 
weak stationarity of n(t) requires also that 

Equations (9) obviously satisfy equa- 
tions (18). 
weakly stationary, zero-mean, bandpass stochastic 
process to be represented in the familiar form(16) 
of equation (17) is that z(t) be analytic. 
means that the spectrum of z(t) exists only for 

Hence, a sufficient condition for a 

This 

where A(t) is a real "amplitude function" and 
f(t) is a real "phase function." 
define an "analytic signal"(3) as 

We may now 

The real part of $(t), denoted s(t), is a "modu- 
lated carrier" in its most general form. 

s(t) = Re@(t)) = A(t)cosEct + f(t2 (23) 

Various classical forms of modulation (FM, AM) 
may be recognized by setting A(t) o r  f(t) equal 
to constants. 

Single-Sideband Angle Modulation Examples 

Signal Properties 

Consider now a single-sideband angle- 
modulated carrier. Let a deterministic f(t), or  
its derivative, represent the transmitted message. 
z(t) must be analytic, since, then, the spectrum 
of s(t) will lie entirely above the carrier fre- 
quency, we. Then 



INPUT OUTPUT 

Figure 3. - Nonlinear demodulator model. 

Now, the system of Figure 3 is an FM demodu- 
lator. The chief purpose of FM is to obtain "mod- 
ulation gain factors" greater than unity by use of 
high modulation indices. Hence, we are interested 
in the relation of output to input signal-to-noise 
ratios (SNR) under the assumption that the modula- 
tion index is high. Since we are interested in 
the "best" operation of this device, we also make 
the assumption that the input SNR is high. Under 
these assumptions the input-output SNR relation is 
obtained, approximately, as 

where 3 is the variance of f(t). 
r.m.s. modulation index. Thus, we see that under 
the assumptions, high-index single-sideband fre- 
quency modulation produces, not modulation gain, 
but, rather, modulation loss. 

uf is the 

Cone lus ion 

This paper has attempted to provide a simple 
theoretical framework for treating both signal and 
noise processes in a way which makes best use of 
properties which they have in common. Existence 
of the analytic counterpart of a real determinis- 
tic time function has been related to existence of 
the Hilbert transform of the real function. 
Existence of the analytic counterpart of a real 
stochastic process has been related to existence 
of the Hilbert transform of the autocorrelation 
function of the real process. New results in 
demodulation of single-sideband angle modulated 
signals in the presence of noise have been 
obtained through application of the theory. 
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